
 
 

  

How to Do File Transfer 
the Right Way 

2019 

Poindexter 
Papers 

 

BY MIKE DIEHL 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
1 

Table of Contents 
INTRODUCTION ................................................................................................................................... 2 

OLD-SCHOOL AND UN-RECOMMENDED........................................................................................ 3 

NEWER, BETTER, FASTER .................................................................................................................... 5 

MANAGED FILE TRANSFER (MFT).................................................................................................... 12 

 
  

GoAnywhere MFT is a HelpSystems secure file transfer solution 
that streamlines, automates, and encrypts data using industry-
standard protocols like SFTP, AS2, and HTTPS and encryption 
technologies like OpenPGP and AES.. With audit trails and 
reporting functionality, GoAnywhere can help organizations meet 
strict compliance regulations, including PCI DSS and HIPAA. 

GoAnywhere can be deployed on-premises or to cloud computing 
platforms like AWS and Azure. It exchanges files via batch, 
collaboration, and ad-hoc methods, uses workflows to execute 
tasks before and/or after transfers, and offers IT teams multiple 
options for users and partners to securely exchange data. Try a 
free trial at www.goanywhere.com/trial. 

 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
2 

Introduction 
Being able to move information from one place to another is an important aspect of 

almost any organization. This information might be a list of products that were sold or 

offered for sale on-line. Or it could be information that requires tighter security, such as 

an employee or patient list with social security numbers, sensitive legal documents, or 

surveillance footage to be sent to law enforcement. It's hard to imagine an organization 

that doesn't produce or require information that needs to be shared with external 

organizations. One of the many challenges that a system administrator faces is how to 

move this information from where it is produced to where it is consumed. This 

information flow needs to be convenient, efficient, secure and reliable. 

 

We're going to discuss some of the methods, in order of increasing sophistication, that 

organizations use to move data from one place to another. 

  



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
3 

Old-School and Un-Recommended 
The first method that people came up with was to simply move files around manually 

using portable storage media. The storage media could then be mailed or hand-

couriered to its destination. This method is obviously a low-tech, but intuitive, method, 

and the easiest to orchestrate. But it's not very efficient, even if the destination is in the 

office next door. This method is also fraught with error. People make mistakes. For 

example, a user might copy the wrong data, or get the media mixed up and send the 

right data to the wrong destination. Certainly, this method isn't going to comply with any 

rational data privacy regulations such as PCI, HIPAA, or the GDPR. Except in those rare 

cases where an air-gap exists between two networks, such as in a Classified 

Environment, this is almost certainly the wrong way to move files around. 

 

The traditional method of moving files from one machine to another was to use FTP. 

While FTP does offer user authentication, it doesn't provide any end-to-end encryption, 

so it's not very secure. User names and passwords are sent from the client to the server 

in plain text and doesn't provide any error alerting capability. Basically, FTP meets our 

requirements for efficiency and 

convenience, but falls flat with 

respect to security and 

accountability. 

 

Since email is ubiquitous these days, 

one might be tempted to simply 

email files where they need to go.   

In some cases, such as sending an 

occasional report to a manager, this 

method might make sense. Email is 

efficient and extremely convenient. 

But we've all faced the difficulty of 

sending an attachment to someone and having it blocked by the destination server 

because the file was either too big, or had an extension that triggered a mail filter rule. 

A new trend in file transfer is to 
use third-party cloud services 
such as Dropbox or Google 
Drive as a means of getting files 
from one place to another.  



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
4 

While some email systems do provide encryption features, most of them are 

cumbersome at best. So, the tendency is to simply email potentially sensitive documents 

in plain-text. We can certainly do better than this, but we first need to discuss a 

relatively new player in the file transfer arena. 

 

A new trend in file transfer is to use third-party cloud services such as Dropbox or 

Google Drive as a means of getting files from one place to another. For individuals and 

small businesses that have absolutely no security or accountability requirements, this 

might make sense. But consider this: once the data has left your network, you have very 

little control over who accesses (or grants additional access to) your data. Even worse is 

that you don't have any direct influence over your cloud provider's security policy. At 

best, you have to be careful about what you put in the cloud. Remember, even a simple 

Profit and Loss report represents Intellectual Property and could even yield useful 

information to your competitors if this cloud service was ever breached. 

 

So far, we’ve only discussed file transfer methods that, frankly, aren’t recommended. The 

only reason we discussed them at all is that they are still in common use, and we’d like 

to discourage it. As we’ll soon see, it doesn’t take too much effort to configure and 

maintain a secure, efficient, and accountable file transfer infrastructure. We’re going to 

discuss three other file transfer mechanisms: how they work, how to configure them, and 

later, how to automate them. Finally, we’ll discuss how a Managed File Transfer (MFT) 

solution can enhance this infrastructure. 

 

  



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
5 

Newer, Better, Faster 
In a nutshell, FTPS is to FTP what HTTPS is to HTTP. FTPS is simply FTP that uses a TLS 

encryption layer to secure the underlying communication. Once a connection is made, 

the same commands that you’d use with FTP work with FTPS. You can authenticate with 

user name and password, or you can use certificate-based authentication, which we’ll 

discuss soon. However, the FTPS protocol does suffer from a couple difficulties. Since 

FTPS is simply FTP with TLS added, it also requires two network connections, one for 

control, and one for data transfers. Of course, some firewalls block this type of 

connection. Also, some FTP servers don’t support the encrypted variant, and those that 

do may require additional configuration. If you are already using FTP and your server 

software supports FTPS, changing to FTPS may be the proverbial “no brainer.”   

 

The next two transfer protocols, SFTP (not 

to be confused with FTPS, though they 

often are) and SCP are both related to the 

SSH protocol. Even though they are both 

derived from the SSH protocol, they are 

used differently. The SFTP client works 

much like the standard FTP and FTPS 

client; this similarity in usage and the 

obvious name resemblance is why SFTP 

and FTPS are so often confused. The SFTP 

client does support a batch mode, where a 

user simply supplies a file that contains 

the commands needed to perform a given 

file transfer. This allows for convenient 

and potentially complex batch processing.  

 

The SCP protocol, on the other hand, is used much like the Unix cp (copy) command. The 

SCP command does support automatically preserving file ownership and permissions. 

Although scripting is free in 
most computing environments, 
and most network 
administrators know how to 
write scripts to automate 
business processes, scripts do 
have some drawbacks to be 
aware of… 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
6 

SCP also supports recursive file transfers. One interesting feature of SCP is that it allows 

for the transfer of files between two remote servers.  

 

You can use either user name and password or a public key to authenticate with SCP 

and SFTP.  The first step to creating and configuring a public key is to use the ssh-keygen 

command to create a public and private key pair: 

 

ssh-keygen -b 2048 -t rsa 

 

The output of this command resembles: 

 

Generating public/private rsa key pair.  

Enter file in which to save the key (/home/user/.ssh/id_rsa):   

Enter passphrase (empty for no passphrase):   

Enter same passphrase again:   

Your identification has been saved in /home/user/.ssh/id_rsa.  

Your public key has been saved in /home/user/.ssh/id_rsa.pub.  

The key fingerprint is:  

SHA256:VKdoHKLaLFujNrpeanDErL0O3a7m44UMX4SUYtQ2FWY user@example.com  

The key's randomart image is:  

+---[RSA 2048]----+  

|..o..Eo . . .    |  

|.o.=o. o + o     |  

|.+o +   = .      |  

|  +=   o         |  

|.+o *   S        |  

|o=oO .           |  

|o.Xoo            |  

| =*+             |  

|=O=o.            |  

+----[SHA256]-----+  



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
7 

There are a few things to notice here. First, we were asked to provide a name for the 

keys to be generated. If this is the first key pair that we are generating, it’s usually 

recommended to simply take the default. If you don’t provide a file name, ssh-keygen 

will create two files in the ~/.ssh/ directory, id_rsa and id_rsa.pub. The id_rsa file is your 

private key and should be protected from disclosure. The id_rsa.pub file is your public 

key. This is the key that you copy to remote destinations in order to connect to them 

using your private key as a credential, as we’ll see shortly. On the other hand, if you had 

provided a filename, such as “mailserver,” ssh-keygen would have created mailserver 

and mailserver.pub in the current directory. 

 

The content of the public key file will look something like: 

 

ssh-rsa 

AAAAB3NzaC1yc2EAAAADAQABAAABAQDDgRFmuYp+7Tj/NZ5WQtJQRCJcx0Iz835PL3p

BU5XIj04Adt4E1UVBwqz4LRNyCmo6w0NaebTcaGq3wPl/9Uf9LF3SOG0M+HqPjASRcDRf

nCUDUFIhsCTseUT5o+82ySte7KsfBlt3/3Z+RYfviwnunNkXp8Kyl/oMvyBJ6zIaMBNEVXFYc

+6QN9idhUNtvV4jh2BXnOlsuRa5ivs8KNwcHwsed1veCcCbSTYnz3KRokKG6iifNHx3+zW

weNyrk1XBBl1ZjG6Ad7vmmgPCP11JA03XsvIhYieNxzqqRlt0XLZK516DLkytYPKrawhdXp5

29Aex1kjTpS/MAG54yEHn user@example.com 

 

As you can see, it’s mostly just a jumble of random characters.  

 

  



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
8 

Once the private and public keys have been generated, we simply add the client’s public 

key to the end of the server’s ~/.ssh/authorized_keys file. The easiest way to do this is to 

log into both accounts via ssh. Once logged into both servers, it’s easy to print out the 

contents of the public key file on the client, copy it to your clipboard, edit the 

authorized_keys file on the server, and paste the clipboard to the end of the file. Since 

you are connected directly to the server via a secure connection, there aren’t any 

security concerns to worry about. However, it is perfectly safe to email a public key to 

the system administrator of the remote systems so that they can install it on the 

appropriate servers. After all, the public key's sole purpose is to establish a secure 

session without having to present login credentials in plane-text.  In order to protect 

against potential man-in-the-middle attacks, you should verify the key’s fingerprint using 

a different method of communication, such as over the phone. 

 

To display a key’s fingerprint, simply have both parties issue this command at the shell 

prompt: 

 

ssh-keygen -lf /home/user/.ssh/id_rsa 

 

Both parties should use the path to wherever they stored the public key if it is different 

than /home/user/.ssh/id_rsa. 

 

This command will display the key’s fingerprint, which may look like: 

 

2048 SHA256:VKdoHKLaLFujNrpeanDErL0O3a7m44UMX4SUYtQ2FWY 

user@example.com (RSA) 

 

If the public keys at both the client and the server have the same fingerprint, the keys 

were transmitted securely and the key is safe to use for secure communication.  

 

Next, you will notice that we were prompted for an optional password. If we had 

provided one, that password would be used to encrypt the private key. In this case, that 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
9 

password would have to be used to open the private key and thus, connect to the 

remote host. This is a nice feature to use with accounts that reside on laptops or other 

devices that aren’t completely under the control of the system administrator. However, 

using a password won’t allow you to automate connections; the password would have to 

be entered by hand or stored somewhere and that would defeat the purpose of having a 

password!  Just press the enter key when prompted for a password. 

 

It’s important to remember that the ssh daemon has to be configured to allow for public 

key authentication. This configuration is easy, though. Simply edit the 

/etc/ssh/sshd_config file and make 2 changes. First, you need to find the 

PubkeyAuthentication entry and change its value to “yes.”  Then, it’s also a good idea to 

turn password authentication off so that the only way to gain access to the server is to 

have the appropriate private key. So, the changes you would make would look like: 

 

PasswordAuthentication no 

PubkeyAuthentication yes 

 

Once the configuration is complete, the ssh daemon needs to be restarted.  

Sometimes, a connection to a particular host requires special configuration options. This 

happens when the server’s ssh daemon isn’t listening on port 22, for example. Openssh, 

and all of the file transfer programs that we’ve discussed that depend upon it, allow for 

connection-specific configuration. This configuration is accomplished by adding an entry 

to the /home/user/.ssh/config file. Such an entry might resemble this: 

 

Host example 

 Hostname 10.0.1.1 

 User admin 

 Port 2022 

 IdentityFile /home/user/.ssh/example 

 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
10 

Here we see an entry for a computer named “example,” The IP address of 10.0.1.1 is 

specified for the server. In this case, we also see that the server’s sshd process is listening 

on port 2022 instead of the standard port 22. Finally, we have declared that a 

connection to this server will use a specific key file, as indicated by the IdentityFile entry. 

This configuration needs to be performed for each client and server that needs to 

communicate with each other. Once this configuration is complete, transferring files 

from one computer to the other is easy! 

 

For example, to use scp to copy a file (report.txt in this case) from the local machine to 

the machine named “example,” from above, you would issue a command that resembles: 

 

scp ./report.txt example:/home/admin/ 

 

If you were transferring the file to a machine that did not have an entry in the 

~/.ssh/config file but did have a DNS entry, you would issue a command that resembles: 

scp ./report.txt admin@example.com:/home/admin 

 

Here, we’ve specified the host name to connect to and the user name to use to 

authenticate as. In both cases, the destination file path is specified after the “:” 

character.  

 

As we said earlier, using sftp is very similar to using the old-style ftp program. Such an 

interaction might look like this: 

 

sftp admin@example 

Connected to 10.0.1.1.  

sftp> cd /home/admin  

sftp> put report.txt  

Uploading report.txt to /home/admin/report.txt                                                                                                                                               

100%  399    32.7KB/s   00:00      

sftp> quit 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
11 

 

All of this interaction can be automated by putting the (s)ftp commands in a batch file 

and using the -b flag to tell the sftp client to execute the commands in the batch file: 

sftp -b batchfile.txt admin@example 

 

In order to use the FTPS protocol to transfer 

files, you need to install the lftp client. The 

lftp program is pretty flexible and can 

transfer files using any of FTP, FTPS, HTTP, 

HTTPS, HFTP, FISH, SFTP and BitTorrent 

protocols!  Using lftp is much like using sftp, 

so we won’t go into too much detail here. 

 

Now that we’ve discussed how to configure 

and use each of these technologies in simple 

cases, it’s important to understand that 

almost no one does it that way. Typically, a 

system administrator would combine these 

commands, with others, into a script that performs a particular business operation. Such 

a script would then be scheduled using a system scheduler such as cron. It’s easy to 

imagine a script that transfers purchase requests to a vendor for processing, or another 

one that downloads a subscribed users list from one server and distributes that list to 

several other servers in order to create an account for each user on one server, 

subscribe them to a mailing list on another server, and potentially set up billing on yet 

another server. All of this would be accomplished (ideally) in a single script. By scripting 

these transactions, and then scheduling each script, we allow each business operation to 

run securely and conveniently. 

 

Although scripting is free in most computing environments, and most network 

administrators know how to write scripts to automate business processes, scripts do 

have some drawbacks to be aware of. First and foremost, scripts are simply programs, 

Managed File Transfer 
(MFT) solutions solve the 
problems that we’ve outlined 
here, while adding unique 
benefits as well. 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
12 

and programming may be a skill that only a few staff members have. You also have to 

think about managing complexity. Are your business operations scripts becoming so 

large and complicated that they are becoming difficult to maintain?  And at some point, 

change management becomes an issue. That is, what if someone makes a single-

character change to a script that breaks the script?  Is there a testing regimen in place to 

catch mistakes like this?  Or does anyone actually look at the cron logs to verify that the 

scripts ran correctly?  These are tedious tasks that typically get ignored. 

 

Unfortunately, change management and error checking are only part of the problem 

with relying solely on scripting to perform critical business operations. If your scripts use 

user name and passwords to authenticate, you have the problem of managing those 

credentials. Typically, credentials are stored in plain-text in files for use by the various 

scripts. This is an obvious security problem. Public/private keys can also be also 

compromised but they are much easier to secure. 

 

When writing file transfer scripts, very few system administrators take the time to build 

auditing and exception reporting into their scripts. Let’s face it, this is a lot of work for 

something that we hope we never have to refer back to!  But when you do need to find 

out when a particular script started to fail, detailed logs can be invaluable. 

 

Fortunately, there are solutions. 

 

  



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
13 

Managed File Transfer (MFT) 
Managed File Transfer (MFT) solutions solve the problems that we’ve outlined here, 

while adding unique benefits as well. To make things easy, most MFT solutions support 

the file transfer protocols that you are probably already using, such as the ones we’ve 

discussed here. Most MFT solutions use GPG, PGP, or AES to encrypt files in transit and at 

rest. This feature alone could be a huge benefit in some of the more regulated 

industries. 

There are many reasons to migrate an 

existing file transfer regimen to an MFT 

solution. 

 

An MFT solution allows a system 

administrator to centralize business process 

scheduling, monitoring, auditing and 

alerting. It’s quite common to have business 

processes scattered across various servers, 

each in one or more scripts that are 

scheduled via cron. This lack of 

centralization is a natural consequence of 

day-to-day operations in an ever-changing IT environment. But it can also make the 

system administrator’s job more difficult. For example, if a particular business process 

begins to fail, it could take a significant amount of time to detect the failure without 

proper (and uniform) monitoring and alerting. Once the failure has been noticed, the 

offending scripts have to be located on whichever server they happen to run from and 

then the scripts have to be debugged to find out why they failed. Sure, most system 

administrators organize and even document how such processes operate, but even this 

is an unnecessary burden if there are convenient alternatives. It should be noted that 

notification and alerting could help comply with data security standards in certain 

regulated industries as well. 

 

An enterprise-grade MFT 
solution should provide 
enterprise features, 
including revision history, 
scalability, and support. 



 
 

HOW TO DO FILE TRANSFER THE RIGHT WAY |              POINDEXTER PAPERS   

 
14 

An enterprise-grade MFT solution should provide enterprise features, including revision 

history, scalability, and support. While it’s possible to impose a change management 

system upon the scripts that drive an organization’s business processes, this simply 

amounts to additional administrative burden on an already overburdened IT 

department. The MFT system should be able to track changes so that if something does 

break, the change that caused the problem can be quickly identified and backed out. 

 

The last major consideration for an MFT candidate is installation flexibility. It might 

make sense to be able to deploy the system in the cloud, or on-premises. Being able to 

support Windows and Linux might be important. Keep in mind that these needs may 

change over time. An organization that manages its resources on-site today may migrate 

to the cloud later. On the other hand, an organization that is mostly cloud-based today 

may decide that it wants to own the hardware resources it relies upon. Any MFT worth 

considering should be flexible enough to adapt to such changes. 

 

GoAnywhere is an enterprise-ready Managed File Transfer solution from HelpSystems. 

GoAnywhere will enable an organization to simplify, secure, and automate critical file 

transfers in a centralized, manageable manner. GoAnywhere is easy to install, deploys 

on-site or in the cloud, and supports most operating systems. We invite you to learn 

more and try it yourself free for 30 days. 

 

 

About the Author: 

Mike Diehl has been a Linux Administrator since 1997 and has a broad technical 

background including Networking, Programming, and Database Administration. Much of 

his career was spent in High Security environments. Mike lives in Columbia, SC. with his 

wife and 4 sons. 

 


